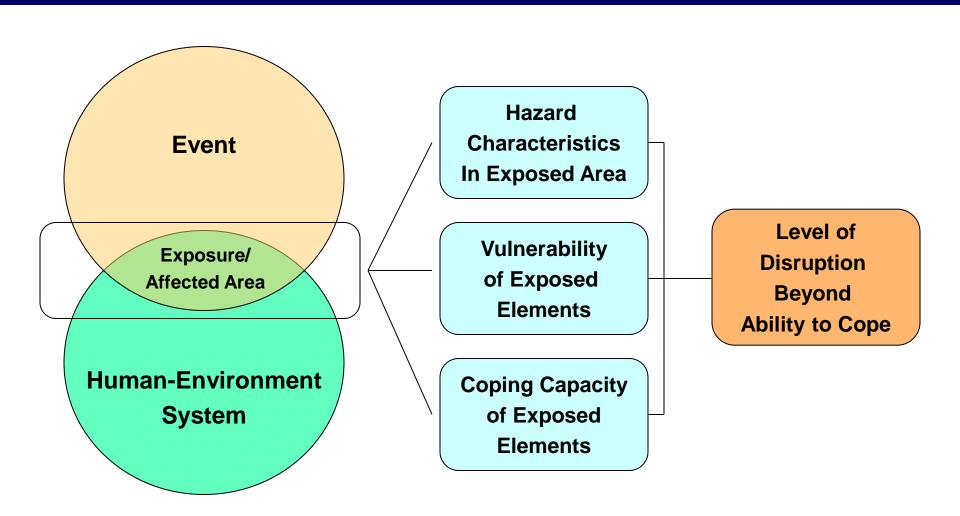
Estimating Loss, Impact and Risk

Heather Bell, PhD
Pacific Disaster Center
October 20, 2010


Understanding Disaster Risk*

The potential disaster losses, in lives, health status, livelihoods, assets and services, which could occur to a particular community or a society over some specified future time period.

The definition of disaster risk reflects the concept of disasters as the outcome of continuously present conditions of risk. Disaster risk comprises different types of potential losses which are often difficult to quantify. Nevertheless, with knowledge of the prevailing hazards and the patterns of population and socio-economic development, disaster risks can be assessed and mapped, in broad terms at least.

*UNISDR 2009

Components of Disaster

Combining the Components

- Basic Loss Estimation for Physical Assets
- Loss Estimation for Communities Based on Assets
- Using Modeling and Simulation to Estimate Impacts and Losses
- Modeling Indirect Losses
- Assets and Consequence to Community
- Estimating and Describing Risk

Basic Loss Estimation for Physical Assets

- Scenario Based
- Physical Damage Relationships
- Monetary Damage Relationships

■ Table 5. Modified Repair Cost Ratio for All Bridges

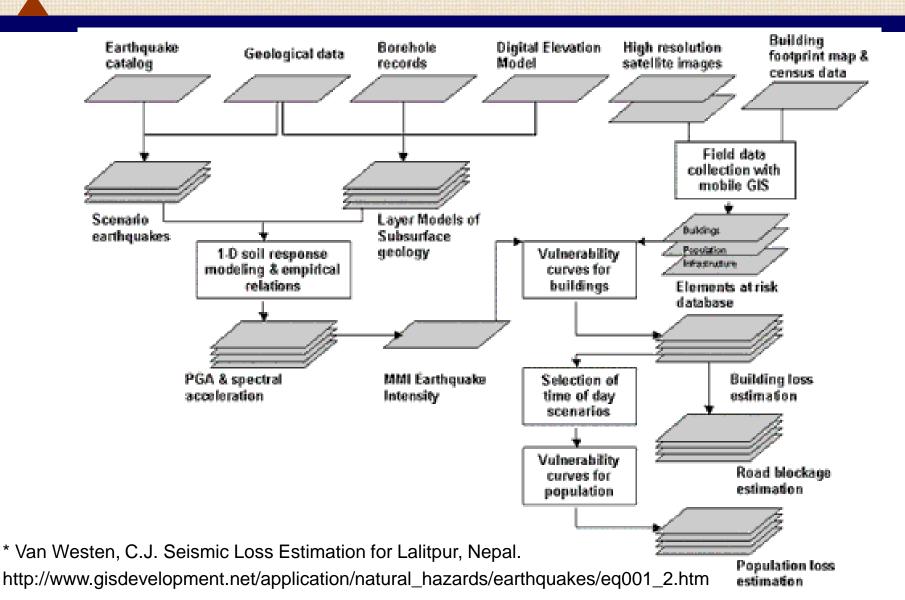
Damage State	Best Mean Repair Cost Ratio	Range of Repair Cost Ratios		
1: No damage (pre-yield)	0	0		
2: Slight damage	0.03	0.01 to 0.03		
3: Moderate damage	0.08	0.02 to 0.15		
4: Extensive damage	0.25	0.10 to 0.40		
5: Complete	See Equation 6	0.30 to 1.0		

Replacement Costs

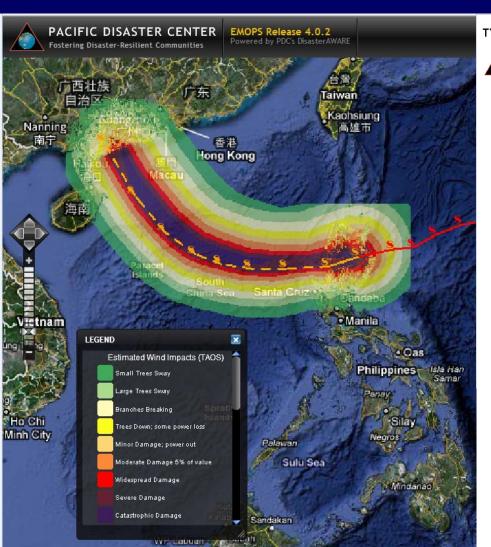
Loss Estimation in American Samoa

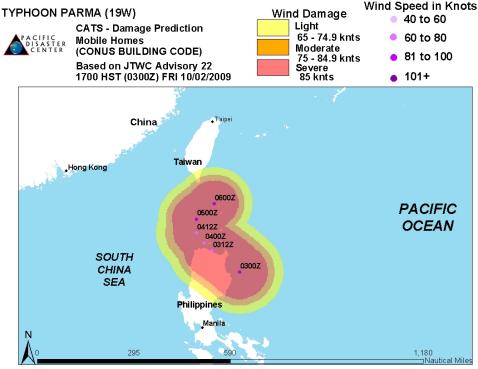
County	Village	Name	Function	Number of Employees	Estimated Replacement Cost (\$)	Critical Facilities Ownership	Approx. Value Contents	1 st -Floor Flood Elevation
		Lagna					(\$)	(feet)
		Leone High						
Lealataua	Leone	School	School/Shelter		\$1,960,000	Gov't.	\$1,960,000	53
		KSBS	2011001/21101001		\$1,500,000	337 11	41,700,000	
		Radio						
Maoputasi	Fagaalu	Station	Communications	10	\$384,000	Private	\$384,000	15
		LBJ						
		Tropical						
Maoputasi	Fagaalu	Medical	Hospital	500	\$18,836,193	Gov't.	\$28,254,289	17
		ASG						
3.6	Б	Gov't			ф1.4.000.000		Φ1.4.000.000	10.5
Maoputasi	Fagatogo		Government		\$14,000,000	Gov't.	\$14,000,000	12.5
		DPS						
Maoputasi	Engatogo	Central Station	Police	230	\$770,414	Gov't.	\$1,155,621	8
Maoputasi	Fagatogo	DPS	ronce	230	\$770,414	Gov t.	\$1,133,021	0
		Fire						
Maoputasi	Fagatogo	Division	Fire	25	\$150,000	Gov't.	\$225,000	6
	- 118111181	PPG			+		+,	
		Intl.						
Tualauta	Tafuna	Airport	Transportation	77	\$69,080,080	Gov't.	\$69,080,080	15.5

Estimating Community Losses Based on Impacts to Assets


- Requires Building Inventory
- Map Hazard Characteristics
- Use Physical Fragility Curves to Estimate Damage to Structures
- Use Monetary Damage Curves and Cost Information to Estimate Monetary Losses
- Use Casualty Ratios Related to Occupancy and Physical Damage Estimates

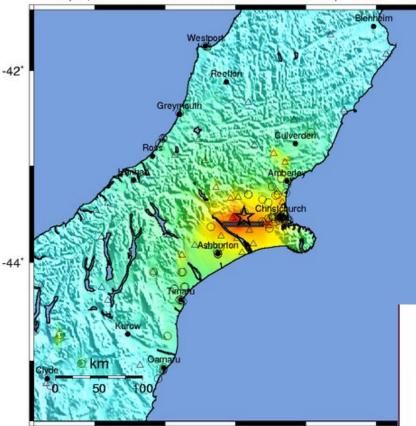
Seismic Loss Estimation: Lalitpur, Nepal*


- Remote Sensing and Field Data Used to Generate Building Database
- SHAKE2000 software used to calculate hazard properties for 3 scenarios
- In GIS, Combined EQ MMI class maps and Building data using developed fragility curve
- Casualties estimated based on night and day occupancy estimates


^{*} Van Westen, C.J. Seismic Loss Estimation for Lalitpur, Nepal. http://www.gisdevelopment.net/application/natural_hazards/earthquakes/eq001_2.htm

Seismic Loss Estimation: Lalitpur, Nepal*

Using Models to Estimate Impacts and Losses



CATS

TAOS

USGS ShakeMap : SOUTH ISLAND OF NEW ZEALAND

Fri Sep 3, 2010 16:35:46 GMT M 7.0 S43.53 E172.12 Depth: 5.0km ID:2010atbj

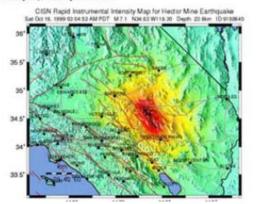
Map Version 9 Processed Wed Sep 8, 2010 08:02:40 AM MDT - NOT REVIEWED BY HUMAN

172°

170

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	٧
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	ŀ
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	6
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	6
INSTRUMENTAL INTENSITY	1	11-111	IV	٧	VI	VII	VIII	

ShakeMap and ShakeCast


Caltrans ShakeCast Server <loren_turner@dot.ca.gov> 03/24/2006 09:41 AM To loren turner@dot.ca.gov cc

2007

Subject DAMAGE ASSESSMENT: Hector Mine, 7.1, (9108645 scte-1)

Caltrans ShakeCast Preliminary Earthquake Report

This report supersedes any earlier reports about this event. This is a computer-generated message and has not yet been reviewed by a Califarans Engineer or Seismologist. Information about the epicenter, magnitude, location, date, and time are provided by the California Integrated Seismic Network (CISN). The analysis of potential bridge damage in this report is based upon an initial ShakeMap (unverified) and estimated fragilities for California bridges. Bridge fragility models were adopted from HAZUS and Basoz & Mander (1999). This report is intended to be used as a first response tool to assist in identifying California bridges most likely impacted by the event.

Event Summary

Name: Hector Mine, Version 1

Magnitude: 7.1 ID: 9108645_scte

174°

Location: 33.8 mi N of Joshua Tree, CA

Latitude: 34.626 Longitude: -116.303 Time: 1999-10-16 10:04:53

Estimated Bridge Damage Summary

Maximum Peak 1.0 sec Spectral Acceleration (PSA): 56.4714 (1/100 g)
Maximum Acceleration: (not measured)

Number of bridges evaluated: 7

RED: 2 YELLOW: 1 GREEN: 4

Facility Damage Estimates from ShakeMap

Bridges presented in the table below are sorted in order of potential damage level.

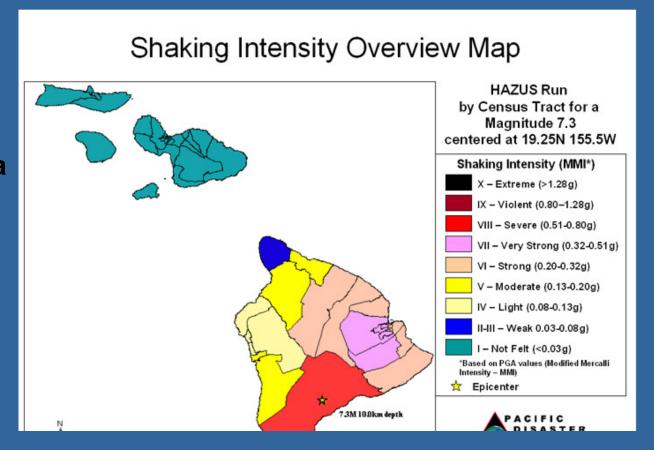

Bridge Name	Bridge No	Dist-Cty-Rte-PM	Damage Level	Value	Exceedance
Pisgah Overhead	54 0689L	08-SBD-040-R37.41	RED	47.6856	1.163
Pisgah Overhead	54 0689R	08-SBD-040-R37.44	RED	47.6856	1.163
Lavic Road OC	54 0734	08-SBD-040-R41.91	YELLOW	56.4714	0.867
Ash Hill Wash	54 0758L	08-SBD-040-R54.75	GREEN	25.5495	0.887
Ash Hill Wash	54 0758R	08-SBD-040-R54.77	GREEN	25.5495	0.887
Argos Wash	54 0737L	08-SBD-040-R43.84	GREEN	48.8524	0.053
Argos Wash	54 0737R	08-SBD-040-R43.84	GREEN	48.8524	0.053

Figure 3 – Email generated by ShakeCast

Using Models to Estimate Impacts and Losses

- Software Links Hazard Model to Asset and Population Inventory
- Software then Applies Damage Curves
- Some Apply Additional Financial,
 Casualty, and Indirect Loss Functions
- HAZUS-MH
 - Earthquake, Tropical Cyclone, Flooding
 - Developed by FEMA for US, but Is Beginning to Be Applied Elsewhere

Hawaii
HAZUS
Atlas
pdc.org/hha

Hospital Availability

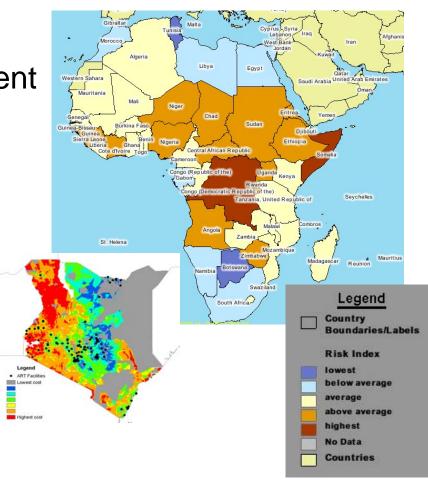
Before the earthquake, the region had 833 hospital beds available for use.

- On the day of the earthquake, the model estimates that only 456 558 hospital beds (55% 67%) are available for use by patients already in the hospital and those injured by the earthquake
- After one week, 63% 76% of the beds will be back in service
- By 30 days, 78% 89% will be operational

What Loss Estimation
Models Are in Use in Your
Area?

Assets and Consequences to Community

- In some calculations of risk to assets like critical infrastructure, consequence is considered part of the risk function.
- If a particular asset were damaged or lost, how badly would the surrounding community suffer?
- Losses are one aspect, but how do you represent the potential for broader disruption to society?

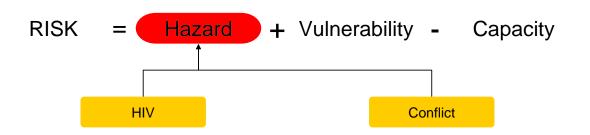

Estimating and Describing Community Risk

- Comparative Composite Indicator Approaches
 - National Level Example
 - Local Level Example
- Risk Profiles, or Community Profiles
 - Can Contain Results from a Variety of Vulnerability, Capacity, or Risk Assessments
 - Likely Contain Qualitative and Quantitative Information

Example 1: National Level Risk Assessment for Continent of Africa

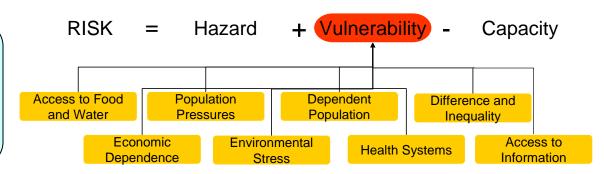
Project Overview

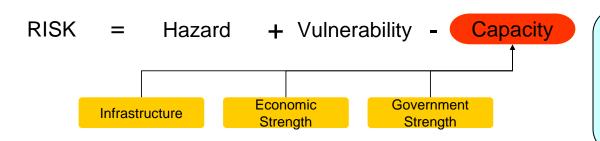
- National Level Risk Assessment for Continent of Africa Using Publicly Available Data
- Interactive Map Viewer
- Demonstrate Applicability for Familiarization and Decision Making
- Sub-National Analysis



^{*} Colvin, Peter, Heather M. Bell, Margaret Roth. 2009. *PDC Support of Humanitarian Assistance and Disaster Relief Information Needs in Africa*. PDC: Maui, Hawaii.

Assessment Approach


- Composite Index Relative to Africa
 - Three Components: Hazard; Vulnerability; Capacity
 - Vulnerability and Capacity Treated as Hazard Independent
 - Equally Weighted
 - Range from 0 to 1
 - Components Created from Sub-Indices
- Sub-Indices
 - Combination of Indicators
 - Indicator Values Scaled from 0 to 1


Assessment Approach

Hazard Is Modular,
Includes Exposure and
Specific Vulnerability
And Capacity

Vulnerability and Capacity Components Are Hazard Independent

Composite Index Allows
Drill Down into
Drivers of Hazard,
Exposure, Vulnerability,
And Capacity

Indicators of Vulnerability

Access to Food and Water

% Undernourished

% Without Improved Water Source

Population Pressures

Urban Population
Growth Rate

Population Growth Rate

Dependent Population

% Refugees & Internally Displaced

% Age Dependent (Over 65; Under 15) Difference and Inequality

Secondary School Gender Ratio

Maximum Minority
Discrimination

Economic Dependence

Debt (% of GDP)

Development Assistance (% GDP)

Trade Deficit (% of GDP)

Environmental Stress

% Forest Change

Freshwater Stress

Agricultural Density

Health Systems

Life Expectancy

Infant Mortality

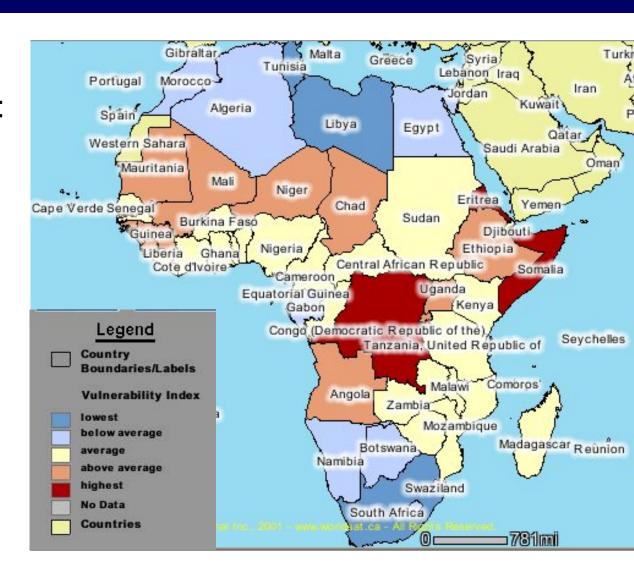
Ratio of Physicians

% With Improved Sanitation

Health Expenditure (per capita)

Health Expenditure (% of GDP)

Access to Information


Adult Literacy Rate

Gross Enrollment Ratio

Internet Users

Representing Vulnerability

- Vulnerability Index
- Top Ten Countries:
 - □ Somalia
 - Eritrea
 - □ Congo (DRC)
 - □ Chad
 - Burundi
 - Sierra Leone
 - Ethiopia
 - □ Guinea-Bissau
 - Niger
 - Guinea

Sub-Indices and Indicators of Capacity

- Economic Strength
- Governance
- Infrastructure

Economic Strength

GDP per capita

Average Growth of GDP

Governance

Voice and Accountability

Government Effectiveness

Control of Corruption

Political Stability

Rule of Law

Infrastructure

Telephone Mainlines and Cell Subscribers

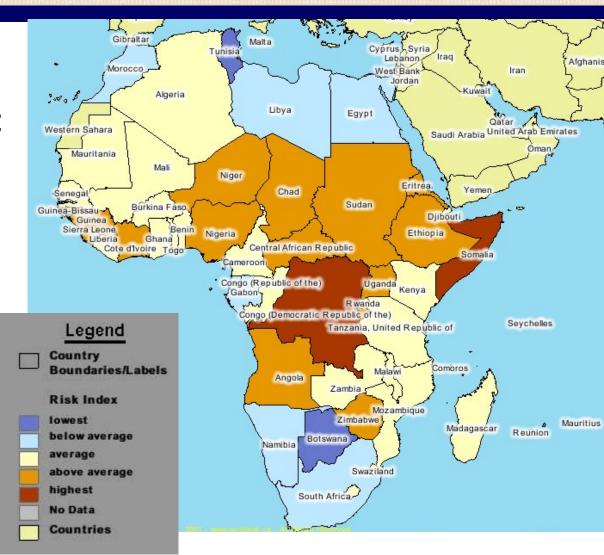
Road Density

Runway Density

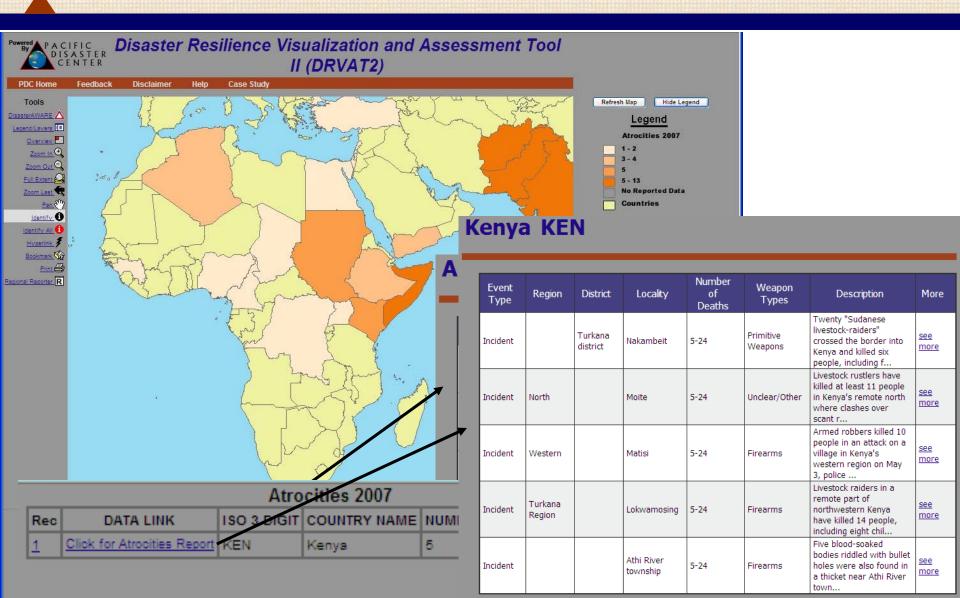
Representing Capacity

- Capacity Index
- Top Eleven Countries:
 - Mauritius
 - Cape Verde
 - □ Botswana
 - Seychelles
 - South Africa
 - Tunisia
 - Namibia
 - □ Sao Tome and Principe
 - Equatorial Guinea
 - Morocco
 - □ Ghana

Representing Capacity


- Mauritius
 - Higher Capacity in All Aspects
- Equatorial Guinea
 - Weak Governance, High Economic Strength
- Ghana
 - Strong Governance, Relatively Weak Infrastructure

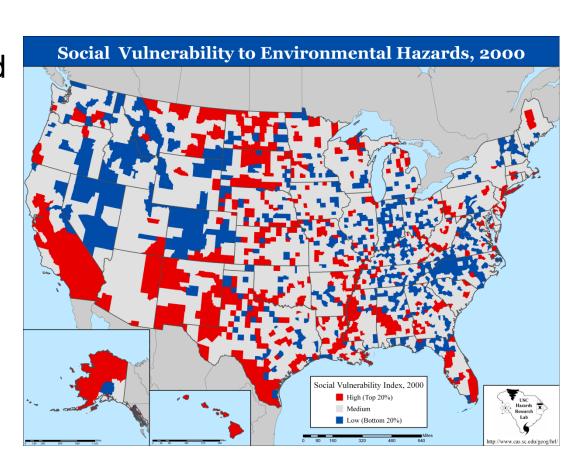
T 40	Capacity		Governance		Infrastructure		Economic Strength	
Top 10	Index	Rank	Index Rank		Index Rank		Index Rank	
Country	(Range 0-1)	(Rank x of 53)	(Range 0-1)	(Rank x of 53)	(Range 0-1)	(Rank x of 53)	(Range 0-1)	(Rank x of 53)
Mauritius	0.90	1	0.93	3	0.89	1	0.89	2
Cape Verde	0.76	2	0.94	1	0.78	2	0.56	7
Botswana	0.73	3	0.93	3	0.26	10	0.99	1
Seychelles	0.71	4	0.78	6	0.71	3	0.65	6
South Africa	0.61	5	0.83	5	0.51	6	0.49	8
Tunisia	0.55	6	0.64	8	0.36	7	0.66	5
Namibia	0.48	7	0.84	4	0.19	20	0.43	10
Sao Tome and Principe	0.46	8	0.57	13	0.70	4	0.11	32
Equatorial Guinea	0.39	9	0.15	45	0.24	13	0.80	3
Morocco	0.38	11	0.56	14	0.27	9	0.31	16
Ghana	0.38	11	0.72	7	0.14	32	0.28	17



RISK = Hazard + Vulnerability - Capacity

- Risk Index
- Top Ten Countries:
 - □ Somalia
 - □ Congo (DRC)
 - □ Chad
 - □ Sudan
 - Burundi
 - Ethiopia
 - Angola
 - □ Eritrea
 - □ Sierra Leone
 - Central AfricanRepublic

Viewer Example: Linking to Qualitative Information

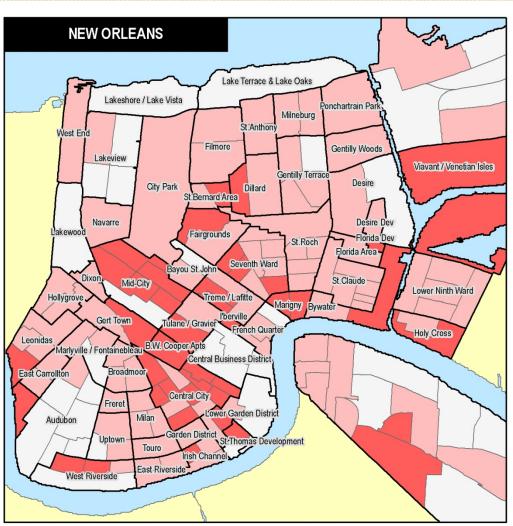


Example 2: Local Level Assessment of New Orleans

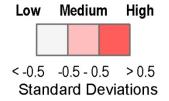
- Project Overview
 - Tract Level Assessment of Orleans Parish, Louisiana
 - Public Data
 - Combine with Event-Based Hazard Information
 - Validate against Recovery Measures
 - Demonstrate Applicability

Assessment Approach

- Vulnerability Estimation Based on SoVI* Method
- Social Vulnerability Treated as Hazard Independent
- Relative Index
- Uses Principal Components
- Equal Weighting
- Additive

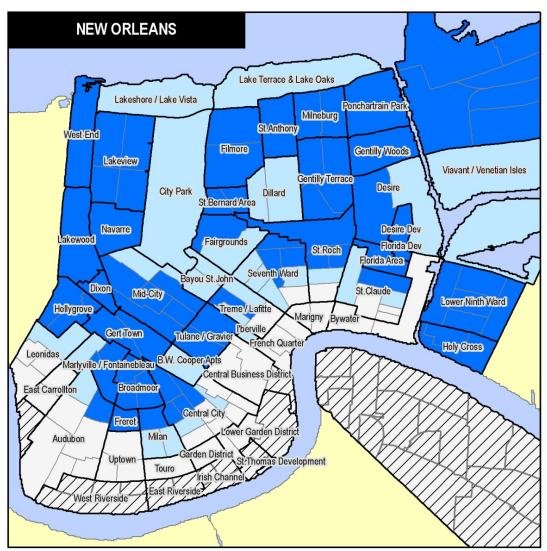


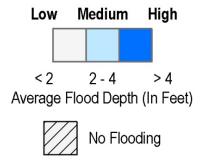
SoVI: Dimensions Captured


- Socioeconomic Status
- Gender
- Race and Ethnicity
- Age
- Commercial and Industrial Development
- Employment Loss
- Rural/Urban
- Residential Property
- Infrastructure and Lifelines

- Renters
- Occupation
- Family Structure
- Education
- Population Growth
- Health Status
- Medical Services
- Social Dependence
- Special-needsPopulation

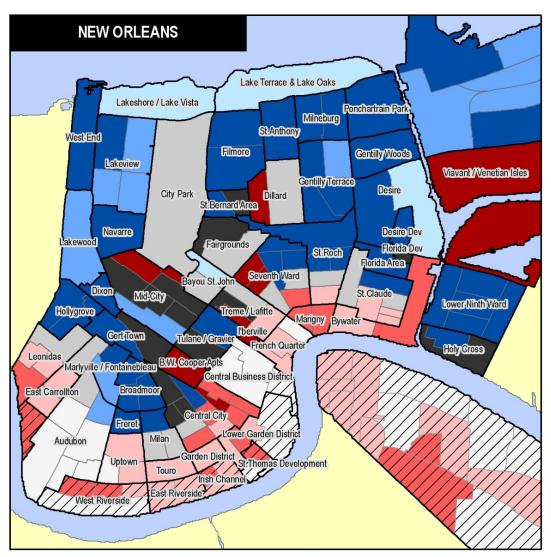
New Orleans Social Vulnerability


SOCIAL VULNERABILITY INDEX ORLEANS PARISH, LA

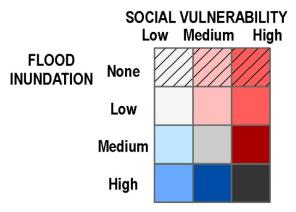


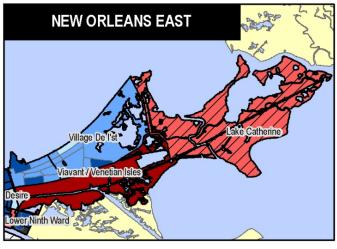
*Following slides from Finch, C., C. Emrich, and S. L. Cutter. 2010. Disaster Disparities and Differential Recovery in New Orleans. *Population and Environment*. DOI 10.1007/s11111-009-0099-8.

New Orleans Flooding during Katrina



FLOOD INUNDATION ORLEANS PARISH, LA





Combining Hazard and Vulnerability

VULNERABILITY & HAZARD ORLEANS PARISH, LA

QUESTIONS?

Group Activity

Acknowledgements

Estimating Loss, Impact and Risk

Contributing Authors

- Heather Bell, PhD, Pacific Disaster Center
- Erin Hughey, PhD, Pacific Disaster Center

Published Source Materials

- Pacific Disaster Center. 2010. Course materials developed for the Ministry of Agriculture and Rural Development (MARD) Natural Disaster Risk Management Project: Education and Training Program. Hanoi, Vietnam, March-May 2010.
- United Nations International Strategy for Disaster Reduction (UNISDR). 2009.
 UNISDR Terminology on Disaster Risk Reduction.
- Van Westen, C.J. Seismic Loss Estimation for Lalitpur, Nepal. (Accessed June 2010)
 http://www.gisdevelopment.net/application/natural_hazards/earthquakes/eq001_2.htm
- Pacific Disaster Center. 2009. PDC Support of Humanitarian Assistance and Disaster Relief Information Needs in Africa. PDC, Maui, Hawaii, 2009.
- Caltrans. 2006. ShakeCast–Developing a Tool for Rapid Post-Earthquake Response.
 The GeoResearch Group Research Notes, 4(2). (Accessed September 2010)
 http://www.dot.ca.gov/newtech/researchreports/two-page_summaries/res_notes_4-2
 2 shakecast.pdf
- USGS. 2010. Earthquake Hazards Program ShakeMap Archive. (Accessed September 2010) http://earthquake.usgs.gov/earthquakes/shakemap/list.php?y=2010
- Mander, J.B. 1999. Fragility Curve Development for Assessing the Seismic Vulnerability of Highway Bridges. (Accessed September 2010) http://mceer.buffalo.edu/publications/resaccom/99-sp01/ch10mand.pdf
- Bell, H.M. 2010. Sessions presented at Humanitarian Assistance and Disaster Relief Geospatial Intelligence (HADR GEOINT) Workshop. Kihei, HI, March 2010.
- Pacific Disaster Center. Hawaii HAZUS Atlas. (Accessed September 2010)
 http://pdc.org/hha
- Finch, C., C. Emrich, and S. L. Cutter. 2010. "Disaster Disparities and Differential Recovery in New Orleans." *Population and Environment*. DOI 10.1007/s11111-009-0099-8
- Cutter, S.L., B.J. Boruff, and W.L. Shirley. 2003. "Social Vulnerability to Environmental Hazards." *Social Sciences Quarterly*. 84(2): 242-261.