Estimating Exposure

Todd Bosse, Sr. Geospatial Information Analyst Pacific Disaster Center Tuesday, 19 October 2010, 2:00p – 3:30p

Economic Cooperation

Presentation Overview

- 1. Mapping Hazard Events
 - Current, historical, hazard zones, modelling
- 2. Mapping Assets
 - Types, characteristics, exposure
- 3. Data Collection
 - Direct, indirect, challenges, metadata
- 4. Case Study #1
- 5. Case Study #2

Importance of Maps

- Maps Are Important Tools for:
 - Recording and storing information
 - Discovering and analyzing spatial patterns and relationships
 - Conveying information that is difficult to express verbally or as text
 - Expressing patterns or trends over time
 - Navigating by sea, air and land
 - Assisting in decision making

Mapping Considerations

- Considerations When Creating Maps:
 - Purpose (message, audience, etc.)
 - Selection
 - Scale
 - Projection
 - Classification
 - Symbology
 - Visual Clarity
 - Data Availability and Quality
 - Ethics

How Does Mapping Support DM?

Maps help users understand the location, distribution and relationships of:

- Hazards and their characteristics
- Assets (resources) and their characteristics
- Overlap of hazards and assets (Exposure)

Why is Hazard Mapping needed ...

Text based Products are Inadequate for <u>Decision</u> <u>Makers</u>

- Lack Situational Awareness
- Warnings are Hard to Digest
- Information is Scattered
- Risks are not Understood
- Dissemination is Limited

Time is <u>LIFE</u>

 Information you can't easily understand and act upon isn't particularly useful

	Sample Advisories						
UR ATI 200	URRICANE DAVID FORECAST/ADVISORY NUMBER 15 ATIONAL WEATHER SERVICE MIAMI FL EP0402 2002 WED AUG 29 1979						
Sta Sta Loo Mao Ari	Starting time: HST 11/14/2005 11:39 Starting time: UTC 11/14/2005 21:39 Location: longitude 144.8 EAST latitude 38.2 NORTH Magnitude: 7.3 Arrival Time is in HST						
1	MAG	UTC DATE-TIME	LAT deq	LON deq	DEPTH km	EQ	
	5.9	2006/04/29 04:06::	<u>13 -11.313</u>	<u>118.534</u>	<u>30.0</u> SOUTH OF	SUMBAV	
	5.1	2006/04/28 18:01:2	<u>28 41.766</u>	<u>80.669</u>	31.8 SOUTHERM		
	5.2	2006/04/28 09:05:2	<u>26</u> <u>23.978</u>	<u>121.655</u>	<u>8.2</u> TAIWAN		
	5.3	2006/04/27 19:13::	<u>10 - 16.050</u>	<u>-173.789</u>	<u>75.2</u> TONGA		
	5.1	2006/04/27 16:35:2	<u>23 -25.337</u>	<u>-105.586</u>	<u>10.0</u> EASTER IS	LAND RE	
	5.2	2006/04/27 14:48:2	<u>25 -6.174</u>	<u>147.711</u>	87.8 EASTERN M	NEW GUI	
	5.3	2006/04/27 04:18:2	<u>28 0.321</u>	<u>30.026</u>	<u>10.0</u> LAKE EDW	ARD REG	
	5.2	2006/04/26 16:20:1	ea a ann	05.044			

Combine and Visualize Multiple Datasets

📩 PDC Natural Hazards and Vulnerability Atlas 🕂

PACIFIC **LSASTER** CENTER

Natural Hazards and Vulnerabilities Atlas Powered by PDC's DisasterAWARE

LEGEND

GLIDE Events

Active Volcanoes

- **Ongoing Activity**
- New Activity

Recent Earthquakes

- Less than 4.0
- 4.0 4.5
- 4.5 5.0
 - 5.0 and greater

Recent Hotspots

Potential oil/gas field

Potential volcanic activity

Large fire/High intensity

- Large fire/Medium intensity
- Large fire/Low intensity
- Medium fire/High intensity
- Medium fire/Medium intensity
- 1 Medium fire/Low intensity
- Small fire/High intensity

Small fire/Medium intensity

Google Imagery

 Γ

Hazard Mapping Equips Disaster Managers

- Mapping hazard information allows disaster managers to answer questions such as:
 - Where are current hazards and what is their extent?
 - Where have hazards occurred in the past and with what frequency and intensity?
 - What hazards are most likely to occur?
 - Where are various hazards most likely to occur?
 - Where are there high likelihoods of several types of hazards?
 - Where is an impending hazard likely to impact?

Mapping Hazard Events

- Real Time Hazards
- Historical Hazards
- Hazard Zones
- Scenario Modeling

Mapping Hazard Events

We can display information about hazards by mapping discrete hazard events (current or historical) as points, lines or areas

Mapping Current Hazard Events

LAYERS

LEGEND

RESULTS

Search Location.

Lon: 102.920 Lat: 28.613

2

📩 PDC Natural Hazards and Vulnerability Atlas 🕂

PACIFIC DISASTER CENTER

Natural Hazards and Vulnerabilities Atlas Powered by PDCs DisasterAWARE

LEGEND

GLIDE Events

Active Volcanoes

- Ongoing Activity
- New Activity

Recent Earthquakes

- Less than 4.0
- 4.0 4.5
- 4.5 5.0
 - 5.0 and greater

Recent Hotspots

Potential oil/gas field

Potential volcanic activity

Large fire/High intensity

- Large fire/Medium intensity
- 🎦 Large fire/Low intensity
- Medium fire/High intensity
- Medium fire/Medium intensity
- Medium fire/Low intensity
- Small fire/High intensity

Small fire/Medium intensity

Google Imagery

Mapping Current Hazard Events

Population Density in Storm Path

24-bour Precipitation Forecast

JTWC Forecast

Tropical Storm Situation Update showing path and intensity of the storm and population at risk.

CATS Model Estimated Damage to Mobile Homes (poorly constructed, single walled structures)

Mapping Current Hazard Events

Mapping Historical Hazard Events

Hazard Zones

We can display information about hazards by deriving probabilities of occurrence for certain hazard types from historical data and mapping the variation across space.

Hazard Zones

Hazard Modeling

We can display information about hazards by mapping the outputs of models used to predict the behavior and characteristics of a real event or mock scenario.

Hazard Related Data Examples

- Past, present and future events
- Magnitude or intensity
- Timing and duration
- Associated losses and impacts

- Tropical cyclones
- Floods
- Landslides
- Drought
- Salt water intrusion
- Wildfire
- Climate variability

- What are assets?
- Why is mapping assets important?
- What information about assets is necessary to collect?

- Mapping Assets and Resources
 - Socio-cultural, economic, or environmental objects and systems that could be impacted by a hazard event.
 - May influence events themselves.
 - People, buildings, transportation networks, cities, cropland, markets, forests, power plants, and many others.

What is important to your community?

Asset Data Examples

- Energy Infrastructure
- Health Infrastructure
- Communications
 Infrastructure
- Transportation
 Infrastructure
- Governance
 Infrastructure
- Security Infrastructure
- Education Infrastructure

- Other Critical Facilities or Infrastructure
- Water Supply
- Food Supply
- Population and Demographics
- Economics
- Environment

- Mapping asset and resource information allows disaster managers to answer questions such as:
 - Where are there gaps in critical infrastructure?
 - What assets and resources are located farthest away from critical services?
- Assets Plus Hazard Equals Exposure
 - Where are there high concentrations of assets and resources likely to be exposed to a hazard event?

Mapping Asset Characteristics

Mapping the Characteristics of Assets

- Need more than "Is the point a building or a bridge?"
- Structural vs. non-structural assets
- Quantity and quality
- Construction type & materials
- Condition, capacity or capability of assets and resources

Mapping Structural Asset Characteristics

Feature Characteristics

Name, Address, Location

Function

Owner/Operator

Number of employees, patients, students, guests etc.

Contact information

First-floor flood elevations (if a building)

Hazardous materials (HazMat) present?

Constructions materials

Age of feature

Estimated value of contents

Estimated replacement cost

Storage capacity (if HazMat)

Business Characteristics

Business name

Location

Business type

Business revenue

Number of employees

Capacity

Seasonal capacity

First-floor flood elevations

Estimated replacement cost

Estimated value of contents

Base/Reference Data Examples

- Administrative and Political Boundaries
- Hydrography
 - Rivers/Streams
 - ≻Lakes
 - ➤ Wetlands
- Oceans
- Land Use/Cover
- Topography
- Bathymetry
- Geology

- Aerial Photography and Space Derived Imagery (Raster)
- Other Boundaries
 - ➤ Public lands
 - ➢ Parks
 - ➤ Land parcels
 - ≻ Tax/Census
- Public Places
- Place/Feature Names

Collecting Data Indirect Collection Direct Collection Metadata

Indirect Data Collection

Indirect Collection

- Data was collected by another organization
- Free and for fee
- Unlikely to be able to get all the data you want
- Normally the best place to start
 - >Why collect data that someone else already has?
- Utilize networks and data sharing portals
- Usually global or regional, local data is sometimes difficult to find in a useable format
- Types include downloadable, offline or services

Indirect Data Collection Sources

The following is a list of some regional data sources:

The Global Hazards Information Network (GHIN): http://www.pdc.org/ghin

United Nations Environmental Programme (UNEP), Project of Risk Evaluation, Vulnerability, Information & Early Warning (PreView): <u>http://www.grid.unep.ch/activities/earlywarning/preview</u>

Socioeconomic Data and Applications Center: http://sedac.ciesin.columbia.edu

GeoNetwork: <u>http://www.fao.org/geonetwork/srv/en/main.home</u>

Global Land Cover Facility (GLCF): <u>http://glcf.umiacs.umd.edu/index.shtml</u>

EM-DAT: The International Disaster Database: http://www.emdat.be

ReliefWeb: <u>http://www.reliefweb.int</u>

Open Street Map: <u>http://wiki.openstreetmap.org/wiki/Main_Page_or</u> <u>http://downloads.cloudmade.com_or http://download.geofabrik.de/osm</u>

Direct Data Collection

Direct Collection – 3 methods

- Manually record desired information on location on a hard copy map. Associated attribute information will need to be documented elsewhere with an ID to link the location and attribute data. Paper maps can be brought into a GIS environment and digitized.
- 2. Collect the desired location and attribute data during a field survey using GPS. This information can then be integrated into a GIS.
- 3. Aerial and satellite images provide spatial information and, when processed, can be included in a GIS. Assets can be "heads up digitized" from these images.

Geospatial Data Management

Geospatial data is should undergo strict processing and documentation procedures

Metadata

Data About Data

A metadata record is a file of information, usually presented as an XML document, which captures the basic characteristics of a data or information resource. It represents the *who, what, when, where, why* and how of the resource.

- Data Source
- Contact Information
- Dates (various)
- Attribute descriptions
- Accuracy and Scale

- Summary of dataset
- Use and Access Constraints
- Spatial Reference
- Processing history
- Keywords

Metadata

Considerations

- Data Is the Biggest Challenge
 - Lack of centralized catalog & consistent search tools
 - Limited metadata / data documentation inhibits understanding
 - Access to actual data is sometimes restricted or unavailable
- The more accurate/current data you have, the better your product
- Data must be current enough, detailed enough, and accurate enough to fit your needs
- Data collection and processing take time and money
 - Must balance mapping and assessment needs with available human and financial resources

Case Study #1 Phu Tho Province Flood Inundation

Phu Tho Province Flood Inundation

Purpose: To better understand potential inundation areas and resulting impacts of flooding

- <u>Scenario</u>: hypothetical breaching of dykes along Black & Red rivers
- Reduce impacts to lives and assets
- Allow Disaster Management

 officials to refine mitigation options
 and evaluate preparedness plans,
 including warning systems and
 evacuation procedures
- Modeled using the DHI MIKE 21
 Flood model

Key Infrastructure Data Collection

Run Flood Model

Elevation Data: 20-Meter created by PDC

Dyke #1	Model Assumptions
River:	Black River
Dyke Height:	5 meters
Rate Discharge:	300 cubic meters/second
Estimated Breach Size:	80 meters

Modeling Analyst

Graphical Output

Model Input Parameters

Flood Exposure Assessment

Phu Tho Province Pilot Project Study Area

Viet Nam Dyke Breach Assessment Report

The purp hypothet scenario even lar flooding mitigatio procedur infrastruc	Infrastructure Type	Commune	Distance to Nearest Breach Location (km)*	Time to First Arrival (hours)	Name of Nearest Breach Location	Maximum Water Depth (m)	Latitud e	Longitude	
Disaster	Pumping Station	X. DËu D-ng	0.87	2.57	Thuong Nong	3.44	21.2476	105.3134	
	School	X. DËu D-ng	2.11	8.98	Thuong Nong	1.02	21.2453	105.3008	4-1) D
Ť	School	X. DËu D-ng	1.90	8.34	Thuong Nong	1.00	21.2415	105.3031	
3 Co	Clinic	X. DÞ NËu	5.79	46.20	Thuong Nong	0.11	21.2425	105.2653	S-40
3.	Commune Office with Police	X. DÞ NËu	5.89	42.35	Thuong Nong	0.54	21.2409	105.2644	E.P.
R) He	Post Office	X. DÞ NËu	5.78	42.99	Thuong Nong	1.83	21.2413	105.2655	
Es	imated preach size. I ou meter	5					Silver .		1.1.1
D) RI He Ra	ke #3 Model A ver: Black RM ight: 5 meters to Discharge: S50 cubi immind Brack RM 142 moti	s sumptions /er 5 meters/se cond	-		At	N.	1	Na 2	

Dyke #4	Model Assumptions
River:	Red River
Height	5 meters
Rate Discharge:	300 cubic meters/second
Estimated Breach Size:	56.5 meters

1

Hypothetical Scenario

1 Pu

Vietnam Dyke Breach Scenario

11/3/2007

Internet Map Viewer

Real-Time Hydro/Met Data

C

SΠ	TỔN TRÓM	MÎ TRÓM	TĂNG
STATION #	NAME OF STATION	CODE OF STATION	TOTAL RAINFALL IN ONE DAY
1	TRUNG ÎI KIÔU	54001	2
2	LŶ TIỔN ỔÉ	54002	1
2	SÕNG ÓÌ	56964	0.2
3	MÊNG TÌ (TV)	74100	5
3	SÕNG ÔÌ	56977	0
4	NEM GIÌNG	74102	3

SÕNG	TỔN TRÓM	MITRÓM	NGIY	GIÊ	MÙC NÍC
NAME OF RIVER	NAME OF STATION	CODE OF STATION	DATE	TIME	WATER LEVER
ÔÌ	TRUNG Í KľU	54001	17/07/2007	13	72791
ÔÌ	MÊNG Ì (TV)	74100	19/07/2007	16	28232
ÔÌ	MÊNG Ì (TV)	74100	19/07/2007	19	28235
NEM NA	NEM GIÌNG	74102	17/07/2007	16	20661
NEM NA	NEM GIÌNG	74102	17/07/2007	19	20656
NEM NA	NEM GIÌNG	74102	17/07/2007	22	20653
NEM NA	NEM GIÌNG	74102	18/07/2007	1	20651
NEM PÔ	NEM PÔ	74103	18/07/2007	1	22539
NEM PÔ	NEM PÔ	74103	18/07/2007	7	22535

Long: 105.33

?

Lat: 21.221

ର 🕂 🔍 ସ୍ 📵 🗤

Case Study #2 Pacific Exposure Database

Pacific Hazards

- Pacific Island nations are at risk from multiple natural hazards
 - Volcanic eruption
 - Earthquake
 - Tsunami
 - Landslide
 - Cyclone
 - etc

Exposure Data is Limited

However....

- Little information on buildings, lifelines, critical assets and infrastructure
- Little information on exposure
- Makes modelling risk difficult
- Can't estimate damage if we don't know what is present

Pacific Exposure Database Process

- Perform indirect data collection for basedata
- 'Heads-up Digitize' buildings and footprints from imagery
- Develop data model for attribute information
- Training of local counterparts
 - Project
 - GPS units & data model
 - Building classification
- Direct data collection in field using GPS
- Data processing and QA/QC process to verify data
- Delivery to clients

- Start country engagement early next year with SOPAC, proceeds by letters, emails etc.
- Provisional data dates in country are:
 Cook is
 Cook is
 Cook is
 Vanuatu
 12 Mar 31 Mar 2010
 Solomon is
 7 Apr 29 Apr 2010
 Solomon is
 Tongs
 Samoa
 Samoa
 Z4 Jun 5 Jul 2010
 Tuvalu
 Fiji
 Papua New Guines
 Senoa
 Senoa

 - Fiji
 Papua New Guines

 - Regional server in SOPAC

Term	Description	Example
Concrete Slab	Concrete slab sits on ground and building walls sit on slab	
Wooden/Concrete Pile	Timber or concrete post less than 1m tall that supports the floor	
Wooden Pole	Timber pole greater than 1m tall that support the floor (typically timber). Normally poles are less than 3m tall.	
Reinforced Concrete Columns	Concrete column more than 1m tall supports the floor, typically concrete. Normally columns are 3m tall.	
Steel Column	Steel column supports the floor, typical in multi-storey commercial buildings.	

Foundation Bracing This refers to material that is used to brace (or support) the building foundation. Often the foundation bracing is not visible from the outside.

Term	Description	Example
Timber Wall	Timber wall built between timber piles or poles or	
Concrete Wall	Concrete wall built between concrete columns	

Field Data Collection

- Collect information via handheld computer /GPS
- Utilize pre-prepared menus, hand held devices, satellite imagery and other digital maps and local counterparts
- Photo of each building
- Raw data to stay in country, final data will be provided when processing is complete

Field Data Collection

Buildings

- Focused on the construction type of buildings
- Key attributes which can be used to characterize building "fragility" include:

≻use

≻age

➤structural type

➤ construction materials

roof configuration

- number of stories
- ≻area
- ≻floor level

Use of Pacific Exposure Database

• Asset database will be overlaid with hazard model outputs to create an exposure database

Hazard

Assets

25 - Households

- 1 Government Building
- 2 Schools
- 4 Businesses
- 1 Airport
- 2 Communications
- 1 Police Station
- 1 Fire Station

Use of Pacific Exposure Database Cont.

Other Uses

- Land use planning
- Linked to other databases

MAHALO!!

Mr. Todd Bosse Sr. Geospatial Information Analyst Pacific Disaster Center tbosse@pdc.org

PDC Homepage: <u>http://www.pdc.org</u> Hazards Atlas: <u>http://www.pdc.org/atlas</u> GHIN: <u>http://www.pdc.org/ghin</u>

Acknowledgements

Estimating Exposure

• Contributing Authors

- Todd Bosse, Pacific Disaster Center

Published Source Materials

- Pacific Disaster Center. 2010. Course materials developed for the Ministry of Agriculture and Rural Development (MARD) Natural Disaster Risk Management Project: Education and Training Program. Hanoi, Vietnam, March-May 2010.
- Pacific Disaster Center. 2009. All Hazards Decision Support System developed for the JTF-HD SMEE Program. Presented in various locations in the U.S. Pacific Command AOR, 2007-2009.
- Pacific Disaster Center. 2007. Course materials developed for the Best Practices in Disaster Management and Vietnam Atlas Training Workshop. Hanoi, Vietnam, 08 November 2007.
- GNS Science, New Zealand, and Pacific Disaster Center. 2010. Presentation. Pacific Exposure Database conducted in eight South Pacific Island Nations, February–October 2010.

Data and Mapping Resources Worksheets APEC Workshop on Hazard Mapping and Risk and Vulnerability Assessment

October 19-21, 2010 Grand Formosa Regent Taipei Chinese Taipei

Base Data Type	Source 1	Source 2	Source 3
Admin and Political Boundaries			
	Data Description:	Data Description:	Data Description:
Hydrography			
	Data Description:	Data Description:	Data Description:
Land Use/Land Cover			
	Data Description:	Data Description:	Data Description:
Topography			
	Data Description:	Data Description:	Data Description:

Bathymetry			
	Data Description:	Data Description:	Data Description:
Geology			
	Data Description:	Data Description:	Data Description:
Aerial Photography/Space Derived Imagery			
	Data Description:	Data Description:	Data Description:

Hazard Type	Source 1	Source 2	Source 3
Tropical Cyclone			
	Data Description:	Data Description:	Data Description:
Flooding			
	Data Description:	Data Description:	Data Description:
Earthquake			
	Data Description:	Data Description:	Data Description:
Landslides			
	Data Description:	Data Description:	Data Description:
Other Hazards			
	Data Description:	Data Description:	Data Description:

Asset/Resource	Source 1	Source 2	Source 3
Energy Infrastructure			
	Data Description:	Data Description:	Data Description:
Health Infrastructure			
	Data Description:	Data Description:	Data Description:
Communications Infrastructure			
	Data Description:	Data Description:	Data Description:
Transportation Infrastructure			
	Data Description:	Data Description:	Data Description:
Governance Infrastructure			
	Data Description:	Data Description:	Data Description:
Security Infrastructure			

	Data Description:	Data Description:	Data Description:
Education			
Infrastructure			
	Data Description:	Data Description:	Data Description:
Water Supply			
	Data Description:	Data Description:	Data Description:
Food Supply			
	Data Description:	Data Description:	Data Description:
Population and			
Demographics			
	Data Description:	Data Description:	Data Description:
Economics			
	Data Description:	Data Description:	Data Description:
	Data Description.	Data Description.	Data Description.
Environment			

	Data Description:	Data Description:	Data Description:
Other Elements of Interest			
	Data Description:	Data Description:	Data Description: